Design of real FIR filters with arbitrary complex frequency responses by two real Chebyshev approximations

نویسندگان

  • Soo-Chang Pei
  • Jong-Jy Shyu
چکیده

Since the real coefficients of a FIR filter with arbitrary complex-valued desired frequency responses are neither symmetric nor antisymmetric, the Remez exchange algorithm cannot be applied directly. The problem can be solved by dividing the original complex approximation into two real ones such that the Remez exchange algorithm can be applied by slightly modifying the Parks McClellan program. This method is much easier than the currently existing methods using linear programming or complex Chebyshev approximation, and the performance is satisfactory. More importantly, the magnitudes of the resultant complex errors are also equiripple as the direct complex Chebyshev approximation designs. Several numerical examples including a low-pass filter, a full-band differentiator, a wide-band Hilbert transformer, and a chirp-delay and sinedelay FIR all-pass phase equalizer are given to show the effectiveness of this approach. Zusammenfassung. Da die reellen Koeffizienten eines FIR-Filters mit beliebigem komplexwertigem Wunschfrequenzgang weder symetrisch noch antimetrisch sind, kann der Remez-Algorithmus nicht angewendet werden. Das Problem kann dadurch gel6st werden, daB die urspriingliche komplexe Approximation so in zwei reelle aufgeteilt wird, dab der Remez-Algorithmus nach einer geringfiigigen Modifikation des Parks McClellan-Programms angewendet werden kann. Diese Methode ist wesentlich einfacher als die bekannten Verfahren, die auf linearer Programmierung oder auf komplexer Tschebyscheff-Approximation beruhen, und die Ergebnisse sind zufriedenstellend. Wichtig ist, dab die Betr~ige der resultierenden komplexen Fehler Equiripple-Eigenschaften wie bei direkter komplexer Teschbyscheff-Approximation aufweisen. Zum Nachweis der Effizienz dieses Verfahrens werden mehrere Beispiele angefiihrt wie ein TiefpaB-Filter, ein breitbandiger Differenzierer und HilbertTransformator sowie ein Chirp-delay und Sine-delay FIR Allpal3 Phasenentzerrer. R~sum~. Du fait que les coefficients r6els d'un filtre FIR 5. r6ponse fr6quentielle complexe arbitraire ne sont ni sym&riques ni antisym6triques, l'algorithme d'6change de Remez ne peut pas ~tre appliqu6 directement. Le probl6me peut dtre r6solu en divisant l'approximation complete originelle en deux approximations r+elles de telle sorte que l'algorithme de Remez puisse ~tre appliqu6 en modifiant 16g6rement la proc6dure de Parks McClellan. Cette m6thode est bien plus ais6e que les m+thodes existantes utilisant la programmation lin6aire ou une approximation de Chebyshev complexe et les performances sont satisfaisantes. Un aspect plus important r~side dans le fait que les modules des erreurs complexes r+sultantes sont 5. oscillation uniforme comme le sont les conceptions par approximation de Chebyshev complexe directe. Plusieurs exemples num+riques incluant un filtre passe-bas, un diff6rentiateur pleine bande, un filtre de Hilbert 5. bande large, ainsi que des 6galiseurs de phase FIR passetout chirp-retard et sinus-retard sont donn6s pour montrer l'efficience de cette approche.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Fir Filters and Allpass Phase Equalizers with Prescribed Magnitude and Phase Responses by Two Real Chebyshev Approximations

Since the coefficients of a FIR filter with arbitrary complex-valued desired frequency responses are neither symmetric nor antisymmetric, the Remez exchange algorithm cannot be applied directly. The problem can be solved by dividing the original complex approximation into two real ones such that the Remez exchange algorithm can be applied by slightly modifying the ParkMcClellan program. This me...

متن کامل

A new iterative WLS Chebyshev approximation method for the design of two-dimensional FIR digital filters

In this paper, based on Chi-Chiou’s weighted least-squares (WLS) Chebyshev approximation method which is for the design of one-dimensional (1-D) FIR digital filters with arbitrary complex frequency response, we propose a new iterative W L S Chebyshev approximation method for the design of two-dimensional (2-D) FIR digital Alters with arbitrary complex frequency response. Several design examples...

متن کامل

Chebyshev Functions-Based New Designs of Halfband Low/Highpass Quasi-Equiripple FIR Digital Filters

Chebyshev functions, which are equiripple in a certain domain, are used to generate equiripple halfband lowpass frequency responses. Inverse Fourier transformation is then used to obtain explicit formulas for the corresponding impulse responses. The halfband lowpass FIR digital filters designed in this way are quasi-equiripple, having performances very close to those of true equiripple filters,...

متن کامل

Magnitude Squared Design of Recursive Filters with the Chebyshev Norm Using a Constrained Rational Remez Algorithm

We describe a Remez type exchange algorithm for the design of stable recursive lters for which the Chebyshev norm of H(!) ? F(!) is minimized, where H(!) and F(!) are the realized and desired magnitude squared frequency responses. The number of poles and zeros can be chosen arbitrarily and the zeros do not have to lie on the unit circle. The algorithm allows us to design lters with non-conventi...

متن کامل

A new WLS Chebyshev approximation method for the design of FIR digital filters with arbitrary complex frequency response

In this paper, motivated by Chi-Kou's weighted least-squares (WLS) Chebyshev approximation method for the design of FIR filters with linear phase, we propose a new self-initiated iterative WLS Chebyshev approximation method for the design of FIR digital filters with arbitrary complex frequency response and real filter coefficients. The proposed method not only inherits all the advantages of Chi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 1992